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The second-order moment structure of 
dispersing plumes and puffs 
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(Received 30 December 1994 and in revised form 23 January 1996) 

A description of the behaviour of the second-order moments of concentration for a 
variety of source types is derived within the context of the classical phenomenology 
of isotropic turbulence. The sources considered include instantaneous area, line and 
point sources and can also be interpreted as relating to plumes from continuous point 
sources and continuous crosswind line sources in a strong uniform mean flow. A 
large number of different regimes are identified corresponding to different relative 
sizes of the many length scales involved. Perhaps the most interesting result is the 
identification of an ‘inertial-meander’ subrange when the inertial-subrange eddies 
contribute to the meandering of the plume. 

1. Introduction 
Classical theory, as summarized by e.g. Monin & Yaglom (1975), has lead to a 

good phenomenological picture of the evolution of isotropic scalar fields in isotropic 
turbulence. In contrast the phenomenology of non-isotropic scalar fields is much less 
well understood; indeed the diversity of phenomena present may make it impossible 
to understand such flows in terms of a few universal concepts. Here we consider 
what is perhaps the next simplest class of flows after the class of isotropic flows, 
namely flows in which the velocity field is isotropic but in which the scalar field is 
non-isotropic as a result of the source configuration. More specifically we consider 
instantaneous area, line and point sources. The results for these sources can also 
be interpreted in the usual way as relating to plumes from continuous point sources 
and continuous crosswind line sources in flows with a strong uniform mean velocity. 
Consideration is restricted to the phenomenology of second-order moments (including 
two-point moments) at high Reynolds and Peclet numbers within the framework of 
classical theory (e.g. we ignore intermittency effects - this is probably acceptably 
accurate for second-order moments). 

The main motivation for this study is derived from the dispersion of contaminants 
in the turbulent boundary layer of the atmosphere, although we hope the results may 
be of wider interest. Fluctuations in the concentration of atmospheric contaminants 
can be of considerable importance in the case of fast-acting toxic contaminants (see 
e.g. Griffiths & Megson 1984; Griffiths & Harper 1985; Griffiths 1991), inflammable 
substances or odours. Of course atmospheric flows are not isotropic or homogeneous 
- however in many atmospheric situations some of our results should be good 
approximations while in others we hope that, intelligently applied, the results should 
give qualitative insight. 

Perhaps the main difficulty in extending the classical results to non-isotropic scalar 
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fields is the number of length scales of relevance to the problem. Excluding the 
microscales which we assume are much smaller than all other scales, the relevant 
scales for plumes and puffs include the source size, the turbulence integral scale, the 
root-mean-square displacement of particles at the time of interest, the root-mean- 
square separation of pairs of particles which are initially close, and, for two-point 
moments, the separation of the two points under consideration. Our approach here 
is to investigate systematically the behaviour of the two-point second-order moments 
in various subranges according to the relative sizes of these length scales. 

We restrict consideration to situations with travel times much less than the tur- 
bulence integral time scale. This case is simpler than the situation for longer travel 
times and is also more useful since for such travel times most flows can be considered 
to be approximately homogeneous. (Although the analysis presented here assumes 
isotropy and not just homogeneity, it could be extended without great difficulty to 
homogeneous non-isotropic flows). Also we consider only length scales and travel 
times much longer than the length and time scales associated with the small-scale end 
of the inertiakonvective subrange. 

It is perhaps appropriate to comment on the relation of the ideas discussed here to 
the basic equations describing the problem, i.e. the Navier-Stokes, incompressibility 
and advection-diffusion equations. As is well known, it is in general impossible to 
make much progress from first principles starting from these equations - hence our 
use here of the classical phenomenology which is based on general principles but 
which, with a few exceptions, is not rigorously related to the underlying fluid dynamic 
equations and indeed probably cannot be so related (e.g. the classical picture ignores 
intermittency effects). The use of the classical phenomenology means we are restricted 
to obtaining results in a number of distinct regimes. The behaviour in the transitions 
between regimes could be obtained with models (such as the two-particle random 
walk model of Thomson 1990) ~ however the aim here is to achieve qualitative 
understanding rather than quantitative prediction and to obtain results which are not 
dependent on particular closure models. 

2. Notation and framework for analysis 
The starting point is the relation of the first and second moments of the contaminant 

concentration c(x,  t )  to the statistics of the motion of single particles and particle 
pairs. Here we take particles to be mathematical idealizations of molecules which 
are advected by the flow and also undergo a random molecular motion. With this 
definition two distinct particles can be coincident and particles which are coincident at 
one time can separate. Although this definition is important conceptually, the precise 
nature of the random motion is unimportant here because of our restriction to scales 
larger than the microscales. For further discussion of the role molecular diffusion in 
the motion of particle pairs and of possible definitions of what constitutes a ‘particle’ 
see e.g. Durbin (1980), Sawford & Hunt (1986) and Thomson (1990). Let X l ( t )  
and X 2 ( t )  denote the trajectories of a pair of particles. The single-particle transition 
probability density function (p.d.f.), i.e. the p.d.f. of Xl(s) given X l ( t )  = x, will be 
written pl(y ,  S I X ,  t )  where y indicates a possible value for Xl(s). Similarly the two- 
particle transition p.d.f., i.e. the p.d.f. of ( X , ( s ) ,  X , ( s ) )  given ( X , ( t ) ,  X , ( t ) )  = (xl ,x2) ,  
will be written p2(y1 ,y2 , s Ix1 ,x2 , t ) .  Then, for an instantaneous source S(y)  at time s, 
we have, for t > s, 

(1) 
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and 

(c (x l , t )c (xz , t ) )  = P ~ ( Y I , Y ~ , ~ ~ X ~ , X ~ , ~ ) ( ~ ( Y I ) S ( Y ~ ) )  ~ Y I  dY2 (2) s 
where () indicates an ensemble average (see e.g. Durbin 1980; Sawford & Hunt 
1986; Thomson 1990). Equations (1) and (2) are expressed in terms of probabilities 
associated with back trajectories of particles, but an equivalent formulation in terms 
of forward trajectories is also possible (Egbert & Baker 1984). Note that we are 
assuming throughout this paper that the flow is of constant density ~ equations (1) 
and (2) are not correct in variable-density flows (Thomson 1987, 1990). 

It  is sometimes convenient to express X I  and X z  in a manner related to the 
separation and centre of mass of the pair of particles. To this end we will write 
X A  = (XI - X 2 ) / $  and X I  = ( X I  + X 2 ) / $ .  The two-particle transition p.d.f. can 
then be defined as the p.d.f. of X A ( S )  and X z ( s )  given XA(t )  = XA and X z ( t )  = XI. 

Defined in this way the p.d.f. will be written, with a slight abuse of notation, as 
slxA, xz, t )  (strictly speaking this is a different function from the p 2  introduced 

above). In general, when quantities with subscripts A, C, 1 and 2 appear in the same 
equation, they are to be interpreted as related by (-)& = - ( - ) 2 ) / $  and 
(-)z = ((-11 + ( - ) 2 ) / $ .  

It is useful to have a notation for the second moments of the transition p.d.f.s. 
We will use S A ( S ~ X A ,  t ) ,  Sz(sIx~,  t )  and Sl(s l t )  to denote the mean-square displacement 
tensors ( ( X A ( S )  - X A ( ~ ) )  8 (XA(S) - X A ( L ) ) ) ,  ( ( X X ( S )  - XAt)) 8 ( X d s )  - x d t ) ) )  and 
( ( X , ( s )  - X I ( [ ) )  8 ( X l ( s )  - X , ( t ) ) )  for particle pairs with XA(t )  = -\A and X,(t)  = xz. 
Note that, because of the homogeneity of the flow, SA, Sz and SI are independent of 
x x  and, because S1 depends only on the motion of single particles, S1 is independent 
of XA. Also SA, Sx and S1 satisfy the identity SA + Sz = 2S1. For XA = 0 (and for 
all xA in the case of S1) these tensors are isotropic and their (Cartesian) diagonal 
components will be denoted by oi(slt), o$(slt) and of(s1t). For more general XA, it is 
useful to have a measure of the change in particle separation. For this purpose we 
define ~ ( s ~ x A ,  t )  = (tr  SA(S~XA, t ) / 3 ) l l 2 .  In SA, OA, d etc. the dependencies on s, t and 
xA will sometimes be suppressed if s is the source time, t is the measurement time 
and XA is the separation of two points for which we are considering the two-point 
moment of c .  

Area, line and point sources with Gaussian cross-sections aligned with a chosen set 
of Cartesian coordinate axes will be considered. In order to treat these cases together, 
we introduce a parameter i to indicate the dimensionality of the source (2 = 1, 2 
or 3). For a vector x, we will write 2 for the A-dimensional vector consisting of the 
last i Cartesian components of x and will write k for the ( 3  - ij-dimensional vector 
consisting of the first 3 - 1, components. The idea behind this notation is that, once 
we have defined our sources, P will indicate the ‘cross-source’ components of x while 
i will indicate the ‘along-source’ components. On occasion we will integrate with 
respect to I ~ we adopt the convention that this has no effect if j. = 3.  For a rank-two 
tensor S ,  S will denote the A-dimensional sub-tensor defined in our chosen set of 
Cartesian coordinates by 

( S if 1- = 3 
s 2 2  s23 

if 1, = 2 

if A = 1. 

If x and S are a A-dimensional vector and tensor, gi(x,S) will denote the A- 
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dimensional Gaus$an distribution with covariance tensor S. 9n(x ,  02) will be used 
to denote 91(x,02/)  where 1 is the tensor with Cartesian components equal to the 
identity matrix. Occasionally we will write ?il(x,S) and 9].(x,o2) with x and/or S 
being three-dimensional; this is a shorthand for ?iA(i, S) and %~(i ,  a2). The area, line 
and point sources can now be expressed as S ( y )  = 9 ~ ( y , o i )  where 00 is a measure 
of source size. Although we are not considering continuous sources explicitly, results 
at a downwind distance x for plumes from continuous point sources and continuous 
crosswind line sources in a strong uniform mean flow U can be regarded in the 
usual way as corresponding to results for dispersion from instantaneous line and 
area sources at time x / U  after release. Provided the turbulence intensity is small this 
should be a reasonable approximation (see e.g. Townsend 1954). 

It is also useful to consider homogeneous random sources (i.e. sources where the 
source strength, and hence the initial concentration field, is a random function which 
is homogeneous in space) with Gaussian correlation functions. Although such sources 
are well understood, the results are useful in studying the area, line and point sources. 
For such sources we have ( S ( y ) )  = 0 and (S (y1 )S(y2 ) )  = 92(yA, o,’). This corresponds 
to an initial correlation function given by (c(yl, s)c(y2, s)) = %1((y1 - y 2 ) / $ ,  o,’). 

We will also consider linear sources (i.e. sources where the source strength varies 
linearly in space - not to be confused with line sources). As for the homogeneous 
random sources, the results for these sources are useful in studying the area, line and 
point sources. For such sources we have S(y )  = 9 with 1 = 1. 

Because we are sometimes interested in small differences (such as (c(x, t)2) -(c(x, t ) )2  
near the source or the departure of (c(xI, t )c(x2,  t ) )  from (c((x1 + x2)/2, t ) 2 )  for small 
values of Ixl - x2I) we will need to keep track of the size of errors in the analysis. 
For this purpose we use the usual mathematical notations O(a) and o(a) to denote 
quantities of order a and quantities which are much smaller than a respectively. 
Precise definitions of 0 and o are given in Appendix A. The notation +o is used to 
indicate ‘plus asymptotically smaller terms’; for example, in A + B(C + ( D  + E )  + o),  o 
denotes terms which are o(C) and o(D + E ) .  As indicated in $1 we consider only the 
classical phenomenology (e.g. we ignore intermittency effects) and our error estimates 
reflect only those errors which would be present even if the classical view was exact 
or which are introduced by approximations which are made in the mathematical 
analysis. The error estimates do not account for errors in the classical picture or 
indeed for errors introduced by the approximations made in $3 below. 

In the two-point moments, we adopt the convention that quantities such as x, (c) 
and (c2) refer to values at the point midway between the two points being considered, 
i.e. at (xl + x2)/2; (cc) and (c)(c) however denote products of values at x1 and x2. 

(c(0)) denotes (c) at x = 0. 
Throughout the following we take the flow to be isotropic turbulence with velocity 

variance o:, energy dissipation rate E and integral length and time scales L and z, 
with z being of order L/o, and E being of order o:/L or O;/T.  

3. Sawford’s approximation 

presented in this paper. Sawford approximated p2(yA, y z ,  S I X A ,  xz, t )  by 
The approximation introduced by Sawford (1983) plays a central role in the analysis 

9 3 ( ~ z  - xz, S X ( ~ ~ X A ,  ~ ) ) P A ( Y A ,  ~ I x A ,  t )  ( 3 )  
where p ~ ( ~ ~ , s l ~ A , t )  is the p.d.f. of X,(s)  given X , ( t )  = XA (in fact Sawford only 
considered the case xA = 0 and (3) above is an extension of his original proposal 
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to more general values of xA). The assumptions involved in this are that X,(s )  is 
Gaussian (which is certainly a reasonable approximation) and that, for fixed X,(t), 
XA(s) and X,(s) are independent. The accuracy of the latter assumption is not so 
clear, although the assumption is supported by the fact that X A ( S )  and X,(s )  are 
uncorrelated. Further support comes, when XA(t )  is small and jt - S I  4 z, from the 
idea that the small and large eddies (which dominate the evolution of X A  and X X  
respectively) are quasi-independent and, when x A ( t )  is large or It - s/ 9 z, from the 
fact that the particles move approximately independently with Gaussian displacements 
(see Batchelor 1952). In conjunction with Sawford’s approximation it is natural to 
assume that p1 is Gaussian, i.e. 

(4) p1(y,slx,t) = 93(Y - x&lt)). 

Again this is certainly a reasonably accurate approximation (see e.g. Monin & Yaglom 
1971, 89.3). 

Unfortunately Sawford’s approximation ( 3 )  cannot be exact for both t > s and 
t < s because it violates the principle that p2(yA,yg, S I X A ,  xx, t )  = p 2 ( x A ,  XZ, tlyA,yZ:, s). 
However, although it is unlikely to be exact, ( 3 )  does not appear to violate any 
fundamental constraints if, as in the use we make of it below, it is only assumed 
for t > s. The symmetry of ( 3 )  could be improved by replacing S Z ( S ~ X A , ~ )  by 
(Sx( t lyA,  s) + SZ(S/XA, t ) ) /2 .  Provided p~ satisfies the exact result that p ~ ( y A ,  SIXA, t )  = 
pA(xA,  tlyA, s ) ,  then the modified form for p 2  does satisfy the principle. However it 
can be shown that the modified form cannot be exactly correct either since it leads 
to at least one of Sx(tlyA, s) and SZ(S~XA, t )  as calculated from the modified equation 
( 3 )  being unequal to the value assumed in defining p2. A consequence of this is 
that (at least if the value of S, used in defining p2 satisfies SA + Sz = 2S1) the 
mean square of J c(x, t ) R ( x )  dx as calculated from (c(x1, t)c(x2, t ) )  using ( 2 )  and the 
modified equation ( 3 )  can, for some choices of R and S, be less than the square of the 
mean calculated from (1). Hence it seems that symmetrizing ( 3 )  makes matters worse 
rather than better (as well as making deductions about concentration fluctuations 
much more difficult). In addition to these problems, ( 3 )  is not exactly consistent with 
(4) unless pa is Gaussian. However, despite these problems, it seems likely that the 
approximations ( 3 )  and (4) are reasonably accurate in many situations. This view is 
supported partly by previous uses of the approximations (e.g. Thomson 1990) and 
partly by the discussion in $5 where the sensitivity of the results to the Sawford 
approximation is investigated. 

Using ( 3 )  and (4) we obtain 

( 4 x ,  t ) )  = 91,(x, 0; + 0:) ( 5 )  
and 

 xi, t ~ ~ 2 ,  t ) )  = gi(xz, o,21+ sz(slxA, t ) )  P A ( Y A ,  SIXA, ~ ) ~ A ( Y A ,  0,’) ~ . v A  (6 )  

for the area, line and point sources. For the homogeneous random sources we have 
(without needing to use the Sawford approximation) (c (x , t ) )  = 0 and 

J 

The study of the homogeneous source case is useful in understanding the area, line 
and point sources for two reasons. Firstly the integral in (7 )  also occurs in the 
result for area, line and point sources (equation (6)). Also, for fixed XA, the spatial 
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(i) A = O  
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(ii) O < A < ~ A  

‘ ! A  

Time s Time t 

(iii) O A < A < < L  

Time s Time t 

(iv) L < A 

Time s Time t 

FIGURE 1. Schematic illustration of the motion of particle pairs. Backwards trajectories are shown 
from time t to time s (s < t ,  t - s 4 z) for various separations at time t. The scale L of the 
energy-containing eddies is also shown. 

integral of ( c (x l , t ) c (x2 , t ) )  for the area, line and point sources (more precisely the 
integral J(c(xI, t)c(x2, t ) )  d fc )  equals (c(xI, t ) c ( x ~ ,  t ) )  for the homogeneous random 
sources (and this result is independent of the Sawford approximation). For the linear 
sources (3, = 1) we have (again without needing to use the Sawford approximation) 
( c ( x , t ) )  = f and 

where c’ = c - ( c ) .  For the linear sources we consider ( c ’ (xI ,  t)c’(x2, t ) )  rather than 
( c ( x l ,  t)c(x2, t ) )  since, by subtracting the mean concentration, we obtain two-point 
moments which depend only on the separation of the two points. The study of 
the linear source case is useful in understanding the area, line and point sources in 
situations where the latter sources can be approximated by linear functions. 

  xi, t V ( x 2 ,  t ) )  = o:(s~t) - Q A ( s I x A ,  t )  (8) 

4. Transition probabilities 
To apply equations ( 5 )  to (8) we need to determine oi(slt) and PA(YA,s~xA,~) for 

t > s. SZ(S~XA, t),  which is needed in (6), can then be determined from SA +Sz = 2 4 1 .  
The behaviour of of(slt) is straightforward. Since we are assuming t - s  4 z, o:(slt) can 
be calculated by assuming that the particles travel in straight lines to leading order, 
giving oi(slt) = o;(t - s ) ~  + o (Monin & Yaglom 1971, p. 540). The behaviour of PA 
is more complicated. However its qualitative behaviour is well understood classically 
(see e.g. Monin & Yaglom 1975, $24). In the following we summarize the classical 
results in a form appropriate for our present purposes. 

We will consider PA(YA, S ~ X A ,  t )  with XA fixed and, writing A for 1 ~ ~ 1 ,  will consider 
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FIGURE 2. Schematic illustration of J p ~ ( ~ ~ , s l x ~ , t ) d $  for j A  = 0. The extent of the distribution 
pa(ya, s/xA, t )  (1.e. the region where p~(y,, s / x ~ ,  t )  is significantly non-zero) is shown for various 
values of xA: (i) and (ii) denote the cases d = 0 and 0 < d 4 OA, (iiia) and (iiib) denote OA 4 d -4 L 
with kA = 0 and ZA = 0 respectively, and (iva) and (ivb) denote L 4 A with 2~ = 0 and ZA = 0 
respectively. kA = 0 implies that XA lies in the along-source direction while ZA = 0 implies that XA 

lies in the across-source direction. The integral is evaluated along the line jA = 0. Using the figure, 
one can see the extent to which the region of integration intercepts the region where p~(yA, S I X A ,  t )  
is significantly non-zero. 

the different regimes corresponding to A = 0, 0 < A 4 OA, OA 4 A 4 L and L 4 A .  
For all these regimes the mean of the distribution is of course XA. The behaviour 
of particle pairs in each of these regimes is depicted schematically in figure 1. For 
each regime we also consider the behaviour of J P A ( J J A ,  S I X A ,  t )  djA for j j A  = 0. This 
quantity is of interest because of its role in (6) and (7) in the limit of small go (in this 
limit S is concentrated at PA = 0). The integral is illustrated schematically in figure 2. 

(i) A = 0: The classical Richardson law gives 02 = ar(t - s ) ~  + o for some constant 
a. Since the statistics of concentration depend mainly on the sizes of the various 
length scales, the relation 02 = ae(t - s ) ~  + o will often be used to re-express time in 
terms of OA. The classical theory implies that P A  is isotropic and is more peaked than 
Gaussian, and that it grows self-similarly to leading order. (In fact the leading-order 
self-similarity is probably only true for IyAl 3 OA. In the extreme tails, small changes 
such as the departure of 02 from a&(t - s ) ~  which results from the fact that z is not 
infinitely large in relation to t - s may have large effects.) SA and d are given by 
SA = o i l  and d = OA. For j j A  = 0 we can write p ~ ( y A ,  S/XA,  t )  d j a  = p~’29~(0,02) + o 
where the pi. are constants reflecting the non-Gaussianity (see (i) in figure 2). Because 
the integration tends to smooth out the peakiness of P A  we expect p3 > p2 > p1 > 1. 

(ii) 0 < A 4 OA: For this case the results in the previous paragraph are a good 
approximation. However we need to consider the leading-order correction to the 
picture in the preceeding paragraph which results from the non-zero value of A .  We 
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use Batchelor’s (1952) argument that pa  almost forgets the ‘initial’ separation A ,  the 
effect of non-zero A being, to leading order, simply a shift in the time origin by an 
amount of order A2I3/&ll3. This implies has the same shape as for A = 0 but with 
S A  = ~ i ( 1  + a1A2/3/0i’3)21 + o ( A ~ / ~ ~ : ’ ~ )  and d = G A ( ~  + a1A2/3/0i’3 + 0) for some 
constant al .  Note that this ‘time-advanced’ p~ has the wrong mean (zero instead of 
XA); however, because A 4 d - GA, any correction of this will have a much smaller 
effect than the time advancement, confirming that the time advancement does give 
the leading-order correction for the effect of non-zero A .  For jA = 0 we have that 
J ~ A G ~ A ,  slxA, t )  djjA equals the value at A = o times (1 - ilal + o) (see (ii) in 
figure 2). For 1 = 3 we have p ~ ( 0 ,  S I X A ,  t )  = p ~ ( 0 ,  s(0, t)(l - 3a1A2/3/~i’3 + o), showing 
that p ~ ( 0 ,  sIxA, t )  is peaked at XA = 0. The same argument with yA fixed instead of 
XA supports the peaked nature of p ~ ( y ~ , s I O , t )  mentioned in the previous paragraph. 
al can be related to the Obukhov-Corrsin constant in the inertial-subrange structure 
function for scalars by considering a random isotropic source with (S(yl)S(y2)) = 

6(yA). This gives (c’) = , u 3 ’ 3 3 ( 0 , ~ 2 )  + o and (cc) = (c2)(1 - 3a1A2/3/oi’3 + o) and the 
rate of dissipation of (c2)/2, E,, is given by 

1 d(c2) 1 2 3 d OA -3 9(c2) - 9(c2)a1/3~1/3 
& = = -# )GA - ~ - 

2 dt dt 4(t - S) 4oiI3 . 

It follows that ( C C )  = (c2) - (4a1/3a’/3)~c~-1/3A2/3 and hence that Ce = 28/3a1/3a1/3 
where CB is the Obukhov-Corrsin constant (as defined by Monin & Yaglom 1975, 
p. 384). It is interesting to note that the inertial-subrange form for the scalar structure 
function follows from the assumption that the effect of non-zero A can be represented 
by a shift in the time origin of the separation process. In fact the shift in time can be 
written in terms of Ce as CeA2/3/25/3~1/3. 

(iii) GA 4 A 4 L :  In this regime we have t - s 4 A2/3/&1/3 and so we can assume that 
the particles travel in straight lines to leading order. From our understanding of the 
two-point velocity p.d.f. for separations lying in the inertial subrange, it follows that 
p A  is non-isotropic and non-Gaussian and, viewed in a frame aligned with XA, the 
shape of p~ is independent of XA and t to leading order (at least for IyA - X A I +  d) .  SA 
is given by 

where C is the inertial-subrange constant in the longitudinal structure function (as 
defined by Monin & Yaglom 1975, p. 353) and a2 = C / ( ~ U ) ~ / ~ .  It follows that 
d = ((11/9)a2)’/2A1/30i’3 + 0. For j A  = 0 and i t A  = 0 (and so ~PAI = A )  we can write 
s p ~ ( y A ,  s lx~ ,  t )  dJA = V ~ ’ ~ ~ ( O ,  a2A2/30:’3) + o where the v1 account for the anisotropy 
and non-Gaussianity in p~ (see (iiia) in figure 2). Note that this result only applies 
for 1 = 1 or 2; for 1, = 3 we have 2~ = XA and so 2~ = 0 implies A = 0, violating 
OA 4 A. For = 0 and (fa1 9 A 1 / 3 ~ i ’ 3  the particles with x A ( t )  = XA cannot easily 
reach $A = 0 and so s P A ~ A ,  SIX*,  t )  dJA is very small (see (iiib) in figure 2). 

(iv) L 4 A :  As in the previous case, we can assume that the particles travel in 
straight lines to leading order; however, unlike the previous case we can also assume 
the particles move independently. Hence, using (4), we can take to be Gaussian 
and isotropic to leading order (at least for IyA - GI) with SA = oil + o and 
d = 01 + 0. For jjA = 0 and 1it~1+ G~ (as in (iii) above this can only happen for 
1 = 1 or 2) we have s pa(yA, SIXA, t )  dJA = ’32(xA, a?) + 0 (see (iva) in figure 2) while 
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for j j A  = 0 and liAl + o1 we have that JpA(yA,slxA,t)djjA is very small (see (ivb) in 
figure 2). 

In fact the idea that particles travel in straight lines to leading order is valid for 
all A + oA. Hence, if we knew the velocity structure function D(xl  - x2) (defined as 
( ( u ( x I )  - u(x2) )  6 (u(xl) - u ( x z ) ) )  where u is the velocity field), we could obtain an 
expression for SA which is valid for all such A ,  namely SA = f/2D(x1 - q ) ( t  - s ) ~  + 0. 

Similarly, if we knew the relative velocity p.d.f. we could calculate p~ to leading order 
for all A + OA. 

For all the above cases it is generally assumed classically that all moments of PA 
exist; indeed this seems almost certain to be true in view of the difficulty of generating 
extremely large velocities. 

Note there is no particular reason why p ~ ( y , ,  S I X A ,  t )  should equal p ~ ( y , ,  ~ I x A ,  s) 
(although it does equal p ~ \ ( x ~ ,  tlyA, s) as discussed in $3 above), and in fact the lack of 
time-reversal symmetry in turbulence (in particular the skewness of the distribution 
of two-point velocity differences for inertial-subrange separations) means that these 
quantities are not identical. Hence the forward dispersion version of p~ will be 
quantitatively (but not qualitatively) different from the reverse dispersion version 
discussed above (for example particles coincident at time t and followed backwards to 
time s will have a different root-mean-square spread to particles coincident at time s 
and followed forward to time t ) .  An exception to this is PA for CJA Q A .  Here the shape 
of pA is the same as the two-point relative velocity p.d.f. to leading order (except 
possibly in the extreme tails), and so the forward and reverse dispersion versions are 
the same to leading order. In particular the forward and reverse dispersion versions 
of v1 and v2 are equal. 

Without attempting to be comprehensive, we will briefly discuss the values of the 
various constants defined above. The values of the constants C and CS are fairly 
well established from observations. Lesieur (1987, pp. 88 and 154) gives values for 
the spectral versions of the constants which correspond to C N 2.0 and CS N 3.2. 
These values are consistent with those given by Monin & Yaglom (1975, pp. 485 and 
504). The remaining constants are rather less well known. Consider first the constants 
which are relevant for 0 < A 4 CJA, namely c1, a1 and the pi. There is little reliable 
experimental evidence on these constants and so we will consider model results, in 
particular the results of Thomson’s (1 990) ‘random walk‘ simulations and results 
from the eddy-damped quasi-normal Markovian (EDQNM) approximation obtained 
by Larchevgque & Lesieur (1981) (see also Lesieur 1987). Using model results is of 
course less satisfactory than using good quality experimental data would be and the 
results should not be viewed with any great confidence. However we note that the 
models in question have shown reasonable agreement with some experimental data on 
the second-order moments of concentration (Larchev2que et al. 1980; Herring et al. 
1982; Lesieur 1987; Thomson 1990) and so the results should be useful in predicting 
the order of magnitude of the constants. Thomson’s model assumes the flow field to be 
Gaussian and so gives the same value for the forward and reverse dispersion versions 
of pA. In principle EDQNM could give different values for forward and reverse 
dispersion with the reverse dispersion form of pA being calculated by varying the 
initial separation and using the result p ~ ( y , ,  sJxA, t )  = pA(xA, tlyA, s). However it seems 
likely that any such differences are an artifact of the model (the EDQNM equations 
for p A  involve only the second-order velocity moments and so do not seem capable 
of correctly accounting for the lack of time-reversal symmetry in the turbulence). 
In any case, Larchevgque & Lesieur set one of EDQNM’s adjustable constants 
to zero (as is usual in EDQNM) and approximate the damping time scales by their 
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asymptotic large-time form; this approximation yields a diffusion equation for PA with 
the diffusivity depending on XA alone (and proportional to (XA(4/3 as in Richardson 
1926) and so leads to identical predictions for the forward and reverse versions of 
PA. The ‘random walk’ model simulations of Thomson (1990) give a N 0.33 and 
a 1  N 0.56 when the inertial subrange constant C, in the Lagrangian velocity structure 
function is set to 4.0, while EDQNM gives a N 0.57 and al 2: 1.3 when tuned to give 
CB 2: 3.2 (Larcheveque & Lesieur 1981). Using CQ = 28/3a1/3a1/3, the random walk 
results imply CO N 1.7 which is almost certainly too low. Note also that, as pointed 
out by Kraichnan (1966), the use of the large-time approximation for the damping 
time scales in the EDQNM approximation is likely to lead to an overprediction of 
a 1  and hence, for fixed Ce, of a. For pn, Thomson’s (1990) simulations (again with 
CO = 4.0) yield values of 1.4, 2.8 and 12 for 1 = 1, 2 and 3, while EDQNM (with 
the large-time approximation for the damping time scales) gives the Richardson form 
PA oc e~p( - -Ad~/~)  (Lesieur 1987, p. 160; Monin & Yaglom 1975, p. 574) and yields 
values of 1.6, 4.1 and 28 for 1 = 1, 2 and 3. We will now consider the constants 
which are relevant for ~ J A  a A -G L, namely 1x2, v1 and v2. a 2  is simply related to C and 
c1 which have been discussed above. v1 and v2 depend on the shape of PA and, for the 
regime in question (i.e. CTA a A a L), PA has the same shape as the two-point relative 
velocity p.d.f. Hence, in principle, v1 and v2 could be determined from measurements 
of this p.d.f. If PA were Gaussian, v1 and v2 would equal and 3/4 respectively. 
The model used by Thomson (1990) and EDQNM (this time without the large-time 
approximation for the damping time scales - this approximation makes no sense in 
calculating v1 and vz) predict (incorrectly) PA to be Gaussian for CTA Q A <. L. In the 
case of Thomson (1990), this is because the two-point Eulerian velocity distributions 
are assumed Gaussian and, as noted above, we are concerned with a regime where 
PA has the same shape as the two-point velocity p.d.f. Hence these models also give 
the Gaussian values for v1 and v2. 

5. Second-order moments 
From the above ideas we can obtain expressions for the second-order moments. The 

analysis is quite straightforward although somewhat lengthy because of the number of 
regimes which need to be considered. The central difficulty is in evaluating the integral 

PA(Y*, S I X A ,  t ) $ ~ ( y ~ ,  0,’) dyA in ( 6 )  and (7). This integral is illustrated schematically 
in figure 3. In all the regimes considered, one of the two distributions P A ( ~ A ,  SIX*,  t )  
and ~ A ( ~ ~ , C T ; )  is much wider than the other, which allows various asymptotic forms 
of the integral to be obtained (details are given in Appendix B). Also, when the two 
distributions fail to overlap significantly we know that the integral must be very small. 

Figures 4, 5 and 6 show the results for the homogeneous random sources, the linear 
sources, and the area, line and point sources respectively. In each region of each of 
the figures the value given refers to the asymptotic situation well inside the region, 
with the exception of the results immediately to the right of A = 0 or immediately 
above z = 0 which are valid right down to A = 0 and z = 0. In figures 4 and 6 
the cases below the left-to-right line through the figure are those with d Q 00, i.e. PA 
much narrower than $ L ( Y ~ ,  o,’), while those above the line are those with 00 Q d, i.e. 
3 ~ ( y ~ , r ~ i )  much narrower than PA. Note that although the figures are laid out as if 
00 4 L, this assumption is not necessary. As 00 increases towards and then exceeds L, 
all that happens is that some of the regions become irrelevant and some of the labels 
on the A-axis which are not associated with region boundaries need to be moved to a 
different point on the axis (e.g. A 2: 00 in figure 4 needs to be moved to after A N L). 
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(a)  ?A 1’ 

(iii b) 1 

FIGURE 3. Schematic illustration of the integral pd(yA, SIX*, t )9 i (yA,  0:) dyA. The cases d 4 00 and 
60 4 d are shown in (a) and ( b )  respectively. Note that 00 could be greater or less than L in (a). The 
extent of the distribution PA(YA,S~XA,  t )  (i.e. the region where ~ A ( ~ A , s ~ x A ,  t )  is significantly non-zero) 
is shown for various values of X A :  (i) and (ii) denote the cases A = 0 and 0 < A 4 OA, (iiia) and 
(iiib) denote OA 4 A 4 L with i~ = 0 and fA = 0 respectively, and (iva) and (ivb) denote L 4 A with 
i~ = 0 and f~ = 0 respectively. i A  = 0 implies XA lies in the along-source direction while f a  = 0 
implies XA lies in the across-source direction. Using the figure, one can see the extent to which the 
distributions P A ( Y A ,  S I X A ,  t )  and 9&,, 0;) overlap. 
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very small for 12A1 &go / 
FIGURE 4. Second-order moments for homogeneous random sources. For simplicity we have taken 

the source time s to be zero. 

t = O  

(c’c’) 

FIGURE 5. Second-order moments for linear sources. For simplicity we have taken the source time s 
to be zero. 

For the area, line and point sources the results given (in figure 6 and below) are in 
general valid only for max(oO,ol), i.e. for points not in the extreme tails of the 
mean plume. In the extreme tails the analysis implies of course that the quantities are 
very small. 

There are a number of simplifications and approximations which can be made 
to the results in figures 4 to 6 and which make the behaviour of the second-order 
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c 

U A N U ,  N L  

FIGURE 6. Second-order moments for area, line and point sources. For simplicity we have taken the 
source time s to be zero. 

moments clearer. Note these simplifications and approximations do not involve any 
new assumptions ~ they are exact results in the same sense that ex = 1 + O(x) as 
x --+ 0 is exact. Some of these simplifications are valid only for liA1+ max(ao,d), i.e. 
for situations where it is possible for a pair of particles with separation of order xA at 
the measurement time t to both pass through the source (when followed backwards to 
time s) without the separation at time s lying in the extreme tail of the separation p.d.f. 
The cases where the restriction I&/ 3 max(oo, d) is required are noted below. In the 
simplifications and approximations we repeatedly use a number of approximations to 
Gaussian distributions, namely 

tr(QS) i ~ S i  j'Qj 
Y).(X, a21 + S)92.(y, a21 - S) = gJ.(X, 02)92(y,  a2) 1 + - + - - - ( 2a4 204 204 

and 
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FIGURE 7. Second-order moments for area, line and point sources for d Q 00, Ii~13 00. Results for 
c1 Q o0 and o0 Q 01 are shown separately. For simplicity we have taken the source time s to be 
zero. 

where S is symmetric and IlSil is the maximum absolute value of the eigenvalues of 
S. These approximations are valid for IISIl Q cr2 and [ti, 1913 0. 

The first two simplifications are concerned with the results in the lower-right part of 
figures 4, 5 and 6 ,  i.e. with the value of (cc) for OA 4 A ,  d <. ‘TO (where we regard 00 as 
infinite for the linear source case). These simplifications also require l i ~ l 3  max(a0, d )  
(= 0,). The first simplification involves expressing (cc) in terms of (c2). For the 
homogeneous random sources we have 

for the linear sources we have 
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and for the area, line and point sources we have 

trG 

(11) 

Here G denotes SA - oi/. The second simplification is concerned with making use 
of our knowledge of SA as summarized in $4. We have avoided making use of 
this knowledge so far in the lower-right part of figures 4, 5 and 6 because this has 
enabled us to obtain results valid for all A 9 gA (and not just for OA 4 A 4 L and L 4 A 
separately) and also because this avoids the need to derive (9), (10) and (1 1) separately 
for CA Q A 4 L and L Q A .  (We could similarly have avoided using our knowledge of 
PA for OA 4 A ,  00 4 d ,  i.e. for the upper-right parts of figures 4 and 6. However there 
is less to be gained by this because there is no simplification analogous to (9), (10) 
and (11) and because estimating aspects of pA beyond those given in $4 is likely to 
be more difficult than doing the same for SA.) By making use of our knowledge of 
SA we obtain the following results. For the homogeneous random sources we have 

for CJA B A Q L and 

for L Q A ;  for the linear sources we have 

for OA 4 A Q L and 

for L Q A ;  and for the area, line and point sources we have 
( C Y )  = o(0:) 

for ISA B A 4 L and 

for L Q A .  In these equations al, a2 and u3 are geometric factors defined by 

4 1 l i A 1 2  4 1 ( i A . i ) 2  
a 3 = - - - -  3 3 A21iI2 ’ a2 = - - -- 3 3 A 2 ’  3 3 A 2 ’  

4 ,  1 I i A 1 2  a, = - A -  -~ 

The third simplification concerns the value of (cc) for 0 < A 4 OA, d 4 00 in the case of 
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the area, line and point sources. Here we can expand the Gaussian in the numerator 
to get 

The final simplification is concerned with the area, line and point sources for d Q go, 
IPAI+ 00. For these cases the results simplify considerably if we consider the cases 
01 4 00 and 00 4 01 separately. The results are shown in figure 7. 

There are a number of areas where more complete results can be obtained. For 
the homogeneous random sources and the area, line and point sources we can obtain 
results which are valid in more than one region of figures 4 and 6. In particular (cc) is 
very small throughout the region I f ~ l %  max(cr0,d). Also (cc) equals ~?A(xA, o,”+o?)+o 
for the homogeneous random sources and (c)(c)+o for the area, line and point sources 
throughout the region L 4 A ,  1f~1+ max(oo,d) (e max(oo,ol)). In addition we have 
not given the greatest accuracy possible for (c’) in figure 7 ~ the values have been 
simplified in order to try and make the qualitative behaviour as clear as possible. 

Before discussing the results given above, we will consider their accuracy. If the 
material in 993 and 4 is correct, then the results above are also correct. Of course 
the results presented in 93 are not exact (see discussion in that section) and the 
classical picture in 94 is almost certainly incorrect in detail (e.g. due to intermittency 
effects). However, with the possible exception of the effect of errors in the Sawford 
approximation which is used for the area, line and point sources, the results are 
robust to small errors in 993 and 4. Hence, provided the problems with the Sawford 
approximation are unimportant, the results should be good approximations. In order 
to see how sensitive the results are to the Sawford approximation, we will investigate 
how much the results would be altered if the Sawford approximation were replaced 
by a symmetrized form as discussed in 93. It turns out that this could alter some of 
the above results. Firstly the value of (c’) for GA Q 00 in figure 6 could be altered by a 
factor of 1 +O(a i /  max(o,”, 0;)). This has a small and not very important effect on the 
results (and does not affect the simplified results in figure 7) except for 01 d 00 where 
it could have a leading-order effect on ( c2 )  - ( c ) ~  near P = 0. Secondly (cc) could be 
altered for 0 < A 4 OA, d 4 00 by a factor of 1 + O(~l ’ /~o i ’~ /  max(a;, 0;)). For 00 4 01 

this would not alter the results, but elsewhere this could have a leading-order effect 
on (c’) - (cc). Finally (cc) could be altered very slightly for CSA 4 A ,  d Q 00. However, 
because SA is only known to leading order, this has no effect once our knowledge of 
SA has been used (equations (12) and (13) and figure 7). The more serious of these 
problems are for 0 ,< A 6 OA, o1 Q 00 and it is only then that the simplified results in 
figure 7 are affected. Despite the above, we should not take too pessimistic a view of 
the accuracy of the results - as noted in 93, simply symmetrizing Sawford’s p2 may 
make the approximation rather less consistent. 

In order to assess whether these problems are significant, we can consider a number 
of alternative ways of deriving the second-order moments of c for the cases where 
our doubts about the validity of the results are most serious, namely the area, line 
and point source cases for 0 < d Q CJA, (TI Q go. Throughout this paragraph we restrict 
attention to these cases. Note that the arguments above gave us no reason to doubt 
that (c’) and (cc) are not correct to leading order - our interest here is in the 
differences (c’) - (c)’ and (c’) - (cc).  Firstly we note that, for % ~ 1 ,  the change in 
the gradient of the source over the region where p 2  is significantly non-zero is small 
compared to the gradient itself. Hence it should be possible to approximate the source 
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FIGURE 8. Schematic illustration of the trajectories of particles arriving at a point P in one 
realization of the flow for G 00. 

by a linear source, although it is hard to estimate the error in doing this. Calculations 
done with this approximation support the results in figure 7 for (41 + ol. For smaller 
IPI, figure 7 gives a quantitative prediction for (c2) - ( c ) ~  but only gives an order of 
magnitude bound on (c2) - (cc). The trend in the results obtained with the linear 
source approximation as 4 + 0 cannot of course support the quantitative prediction 
for (c2) - ( c ) ~  but lends support to the bound on (c’) - (cc) if we assume, as seems 
plausible, that (c2) - (cc) varies monotonically with 141 as 4 decreases through 01 to 
zero. Secondly, for the cases being considered, p2 is narrower than the source in all 
directions and so we can calculate (c’) by applying the first lemma in Appendix B 
directly without needing the Sawford approximation. This calculation gives 

(2) = (c)2 (1 + (,PI2 + 7) 3 + 0 (3)) . 
This supports the value in figure 7 for JPJ + ol, but only gives an order of magnitude 
bound on (c’) - (cj2 near f = 0. However the error term in the lemma is due to 
the non-Gaussianity of p2 and this non-Gaussianity is associated with the scale CSA 

not ol. Hence the lemma may be giving a pessimistic error estimate and the result 
in figure 7 may be correct down to P = 0. Finally it seems probable that at such 
short times it is a reasonable approximation to calculate (c2) - (c)’ by representing 
the dispersion as simply a bulk displacement of the source profile without change of 
shape. This can be justified by considering the particles arriving at a point P in one 
realization of the flow (see figure 8). The variation in the starting points of the particle 
trajectories is small (of order oA) compared to the bulk displacement (of order 01) 

and so, because oA 4 oo, the variation 6s in S between these starting positions can 
be neglected compared to the difference AS between S at the starting position and 
at P. Hence the change in concentration between time s and time t is dominated by 
bulk displacement. Calculations with the bulk displacement assumption (similar to 
those in Gifford’s 1959 fluctuating plume model) support the value given in figure 7. 
From these arguments we conclude that the results in question are probably correct, 
at least in the simplified forms given in figure 7. 
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6. Discussion 
In this section we will discuss the results in $5 and try to give some simple physical 

pictures of what is happening in each regime. Several of the results are well-established 
(such as the inertial-convective subrange behaviour for 0 < d 4 CTA) but there are 
also a number of new and interesting results (such as the ‘inertial-meander’ subrange 
discussed below). 

6.1. One-point moments 
Consider first the one-point moments. For the homogeneous random sources, (c’) 
has two regimes with the transition occurring when OA 2: q, i.e. when it is possible 
to bring together particles which come from points for which, at the source time, 
the concentrations differ significantly. When this is possible we expect mixing to 
occur with (c’) decreasing and E ,  becoming significant. When CTA 4 00, i.e. in the first 
regime, the particles arriving at a given point must, in any one realization of the flow, 
have come from points for which, at the source time, the concentrations were highly 
correlated. Hence (c‘) is approximately equal to its initial value. When oo Q GA, i.e. in 
the second regime, the source (S(y , )S(y , ) )  can be approximated by a delta-function 
concentrated at j A  = 0 and so (c’) varies like with the coefficient depending on 
the shape of p ~ .  

This is 
essentially because there is no length-scale associated with the source. The particles 
in the ensemble of realizations which arrive at a given point must have come from 
points for which the concentrations, at the source time, have a (root-mean-square) 
variability equal to ol. Also, because CTA Q 01, the particles in any one realization 
which arrive at the point must have come from points for which the variability is 
much less. Hence, to leading order, mixing can be neglected, c’ is proportional to the 
displacement of a particle, and (c ’~ )  = ot. 

Finally we consider the area, line and point sources. Here we have three regimes 
illustrated in figure 9. The two transitions occur when o1 2: 00, i.e. when the scale 
of the meandering becomes comparable to the source size, and when 2: oo, i.e. 
when it is possible to bring together particles which come from points for which the 
concentrations at the source time are significantly different. As for the homogeneous 
random sources we expect mixing to occur with J(c2) dP decreasing and E, becoming 
significant when CTA becomes comparable to 00. Note also that, considering particles 
travelling forward in time from the source, the change in separation for particles 
with initial separation of order 00 is of order CTA for oo 4 GA, of order o ~ / 3 0 ~ ’ 3  for 
CTA Q oo Q L and of order 01 for L 4 00. Hence the time when CTA N 00 is also the 
time at which this change in separation becomes comparable to 00 and the cloud of 
contaminant begins to distort and break up; for GA 4 oo the cloud remains coherent 
in the sense that the concentration profile in the cross-source direction is, at any given 
along-source position, simply a displacement of the source profile. The root-mean- 
square instantaneous plume width in the cross-source direction (more precisely the 
root-mean-square width of the ‘mean instantaneous plume’, the mean instantaneous 
plume being defined as the ensemble mean of the cross-source concentration profiles 
with the centres of mass of the profiles aligned before averaging) is of order the 
larger of cro and the change in separation for particles with initial separation of order 
00, i.e. it is of order max(o0,oA). When o1 Q oo, i.e. in the first regime, the width 
of the ensemble mean concentration field and the root-mean-square instantaneous 
plume width are equal to leading order and so the amount of plume meander is small 

For the linear source the situation is simpler with only one regime. 
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Ensemble-averaged plume 
width-max (00,  u,) <- I 

I 
I 
I 

, I 

I----- 
u~ Oo E, significant 

t 
FIGURE 9. Schematic illustration of the dispersion from area, line and point sources. 

compared to the plume width. However, when o0 4 gl, i.e. in the second and third 
regimes, the root-mean-square instantaneous plume width is much less than the width 
of the ensemble mean concentration field and so the plume is narrow compared to the 
distance over which it meanders. In the first two regimes, 01 4 CTO and CTA 4 CTO 4 01, (c2)  
evolves as one would expect from a coherent meandering Gaussian cloud (Gifford 
1959). In the third regime, c0 4 D A ,  the source S(y )  can be approximated by a delta- 
function concentrated at $ = 0 leading to a root-mean-square instantaneous plume 
width equal to aA(t)s) (Batchelor 1952). Here Gifford's fluctuating ('meandering' would 
be a better word ~ there are no 'in-plume' fluctuations) plume model provides some 
insight into the scaling of the result although the actual (c2) is greater by a factor 
pL;(oA(tls)/oA(slt))i. (this factor is in fact the equivalent of pi for the forward dispersion 
form of PA) which represents the in-plume fluctuations and any non-Gaussianity of 
the mean instantaneous plume. As expected from random walk simulations (Thomson 
1990), C T ~  (= ( c ' ~ ) ~ / ~ )  peaks away from the centreline (i.e. away from 4 = 0) initially, 
with the peak moving to the centreline when g1 2: oO. The overall peak in (T, (in time 
as well as space) occurs when g1 'v go. In contrast o,/(c) always has a minimum on 
the centreline and the peak centreline value of oc/(c) occurs when DA N 00. 

6.2. Two-point moments 
We will now consider the two-point moments. For 0 < d 4 CTA we have the standard 
inertial-convective subrange scaling LY - f l A 2 / 3 .  These results arise from the 'time- 
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FIGURE 10. Values of E, for the various source types. For simplicity we have taken the source time 
s to be zero. 

advancement’ of PA described in case (ii) of 94 and suggest that the inertial subrange 
can in general be viewed as a consequence of the time advancement. It is possible 
to infer the implied value of E~ for the inertiakonvective subrange. The results are 
shown in figure 10. It is also possible as a check to derive E, from (c2) for the 
homogeneous random sources and from ( c ’ ~ )  for the linear sources and to derive 
J E,  d4 for the area, line and point sources from J(c2)d4. While this consistency is 
a useful check, it is easy to show that for the types of sources considered here such 
consistency must follow from the time-advancement assumption of Batchelor (1952). 
This is true even for non-Gaussian source shapes. For example, for the homogeneous 
random sources we have 

and 

which leads to 
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‘v (2) - -&e,,E-”3(d2/2)2’3 CH 
2 

Note that, for the area, line and point sources, our analysis is not sufficient to enable 
us to estimate (c2) - (cc) for 0 < d ~ O A ,  01 [PI QCTO. As a result we cannot 
obtain eC for o1 4 o0, 121 4 00. It does not appear possible to avoid this problem with 
the approach adopted here. 

At larger separations than CTA a more diverse range of behaviour is observed. Some 
of the results appear quite complex and it is perhaps easiest to understand the results 
by considering separately the behaviour for separations in the across-source direction 
(2, = 0) and in the along-source direction ( 2 ~  = 0). Note that the along-source 
direction only makes sense if 1. = 1 or 2; if 2 = 3 there is no along-source direction. 
Our main aim here is to understand the length scale on which (cc) decays. Consider 
first the linear sources. Here c’ is proportional to the displacement of a particle and 
particle displacements are correlated for A of order L or smaller. Hence (c’c’) decays 
on the scale L. It is interesting to note that (c’c’) retains the inertial-subrange type 
of scaling for oA 4 d 4 L, although (c’c’) is no longer isotropic with the behaviour in 
the along- and across-source directions being quantitatively different. We will now 
consider the homogeneous random sources and the area, line and point sources. It 
is convenient to consider these together since there are many similarities between the 
two cases and to describe them separately would involve much repetition. However 
since our main interest is in the area, line and point sources, the discussion will focus 
on this case with any differences which apply to the homogeneous random sources 
being given in square brackets [I. Consider particle pairs with positions x1 and x2 
at time t. To understand the behaviour for separations x1 - x2 in the cross-source 
direction, consider the fraction of particle pairs for which both particles pass through 
the source [for which the source concentrations at the particle positions at time s are 
significantly correlated]. (cc) decays as this fraction decreases relative to the fraction 
for pairs with zero separation at time t. This happens when d reaches max(oo,(iA) 
and hence (cc) decays on the scale max(a0,aA). For along-source separations the 
situations is more complex. Firstly (ce) does not decay to zero for large A but to 
( c ) ~  [~] . (X, ,CT,~ + CT:)]. We expect (cc) N (cj2 [(cc) e %i(xA,oi + C T ~ ) ]  for A + L - in 
this regime we can assume the particles move independently. Perhaps the easiest way 
to discuss the results is to consider the length scale on which (cc) decreases to a 
significant fraction of (c2), say to (c2)/2. For times with o1 ~ C T O  this never happens 
as ( c ) ~  [9i(xA,oi + CT?)] itself is close in value to (c2); instead (cc) decays to ( c ) ~  
[Y i (x~ ,  CJ~’+CT: ) ]  on the length scale L. For times with CTA 4 CTO 4 01, particles which are 
coincident at time t come from locations where the source concentrations are almost 
identical. When d is large enough so that d 2 00 ( i t .  d‘’30if3 N 00) the particles 
are likely to come from places with significantly different source concentrations ~ 

hence (cc) decreases significantly on the scale G:/G;. For times with 00 4 CJA, even 
particles which are coincident at time t are likely to come from places with different 
source concentrations. The fraction of particle pairs for which both particles pass 
through the source [the particles come from points with significantly correlated source 
concentrations] decreases significantly from its value for d = 0 when d - CTA N GA, i.e. 
when A E CTA. Hence (cc) decreases on the scale CTA. 

For CTO 4 o1 we have seen that (cc) decays significantly before d reaches L. However 
as A increases beyond the point where (cc) has decayed significantly, (ec) does not 
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FIGURE 11. Illustration of the processes involved in the inertial-meander subrange. 

rapidly converge to ( c ) ~  [ 9 l ( x ~ ,  GO' + G:)] but decays slowly and only approaches ( c ) ~  
[9,&~,~2 + G:)] when A is of order L. This behaviour can be seen in figures 4 and 
6 for GA B A 4 L, r0 4 d. Here the along-source correlation function has a long tail 
proportional to A-'l3. This long tail results in an integral scale which is much larger 
than the scale on which (cc) decays to (c2)/2. We will discuss this behaviour in more 
detail only for the area, line and point sources, although an analogous discussion 
is possible for the homogeneous random sources. The regime GA B A B L, 00 Q d 
corresponds to values of A which (i) are much smaller than L, (ii) are much larger 
than the instantaneous plume, and (iii) are large enough so that d is much larger 
than the instantaneous plume. Condition (i) implies that eddies of scale A lie in the 
inertial subrange. Condition (ii) implies that the eddies of scale A move the plume 
coherently while (iii) implies that such eddies move the plume laterally by a distance 
much greater than the plume width - taken together these imply that the effect of 
such eddies on the plume is to cause meandering. Hence we will call this regime 
the inertial-meander subrange (see figure 11). This behaviour corresponds to the 
spectrum of c having a lot of low-frequency energy and varying with wavenumber k 
as k(u3-') .  For the instantaneous line source (or continuous point source) this is k-1/3 
while for the instantaneous area source (or continuous cross-wind line source) this is 
k-2/3 .  This subrange has in fact been observed for a continuous point source at short 
range in the atmosphere (Mylne, Davidson & Thomson 1996). 

7. Summary 
It has been shown how it is possible to use classical ideas to develop a picture 

of the phenomenology of the evolution of the two-point second-order moments of 
concentration for a variety of source configurations in isotropic turbulence. Of 
particular interest is the existence of an 'inertial-meander' subrange for instantaneous 
area and line sources (and continuous cross-wind line and point sources in a strong 
uniform mean flow). It seems likely that the ideas presented here could be extended to 
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a wider range of conditions, for example to non-isotropic (but homogeneous) flows, 
to travel times and length scales beyond the scales associated with the small-scale end 
of the inertial-convective subrange (although there is not much new to learn here), to 
travel times greater than z, and to a wider range of source types (including the case 
of two or more sources). 

Appendix A. 0 and o notation 
Precise definitions of 0 and o are not entirely straightforward because we are 

usually considering several asymptotic limits simultaneously. For example all the 
results require t - s to be much less than z and much greater than the time scale 
associated with the small-scale end of the inertial-convective subrange. In most cases 
there are also further requirements. 

For a result which is stated to be valid for a; 4 bi, i = 1,. . . ,n ,  O(a) indicates a 
quantity which is bounded in absolute value by K J a J  for some K when the ai/bi are 
sufficiently small. Similarly o(a) indicates a quantity which, for any given quantity 6, 
is bounded in absolute value by 6(a (  when the a j /b ,  are sufficiently small. We require 
K and the smallness required for ai/b,  to be independent of all quantities on which 
the term written as O(a) or o(a)  depends. These definitions are of course essentially 
the usual ones, except that we have made it explicit that the constraints on the size 
of the terms O(a) and o(a)  are uniform across all quantities. For example, for 0’ 4 0 
we have 

x2 
2(0’ + (7’2) 2cr2 

1 

- x- 
- __ + 0 (T) 

and we can take K to be independent of x as well as of cr and 0’. 
Some results are stated to be valid provided ai 4 bi, i = 1,. . . , n and ci 3 di, i = 

1,. . . , n’. In such cases O ( a )  and o(a) have similar meanings, except that we do not 
require K and the smallness required for a, /bj  to be completely independent of all 
quantities. Instead we only require that, for any choice of K i  > 0 ( i  = 1,. . . n’), K 
and the smallness required for a, /bj  can be chosen to be independent of all quantities 
on which the term written as O ( a )  or o(a) depends as these quantities vary subject to 
the constraints Icj/dil d K,. For example, provided cr’ 4 cr and x+  cr we have 

exp ( - 2 ( d  x2 + 0 ’ 2 )  ) =exp(-$> ( 1 + o ( y ) ) 7  

but note that as x/a increases, we need to increase K or require cr’/o to be smaller. 

Appendix B. Evaluation of the integral in equations (6) and (7) 
Here we present without proof four lemmas which are useful in obtaining the 

required results and show how these are used to evaluate the integral in equations 
(6) and (7). These lemmas all concern the evaluation of integrals of the form 
Jp(x)9i(x,02)dx. The first two lemmas are concerned with the case where p(x) is 
a much narrower distribution than 9?).(x,cr2). Lemma 1 states that in such cases one 
can approximate the integral by replacing p ( x )  by a Gaussian distribution with the 
same first- and second-order moments. 

LEMMA 1. Let p ( x )  be a p.d,f:  with mean ml, second- and third-order central moments 
mz and m 3 ,  and absolute third- and fourth-order central moments (i.e. Sp(x)lx-ml13 dx 
and p ( x ) l x  - rnl l 4  d s )  13 and 14. Then J p(x )9 ; . (x ,  02) dx = gA(ml, 02/ + m2) + c where 
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I E ~  < Kl3/0’+~ for  some constant K (which is the same for  all p and a). If also m3 is 
zero, then I E ~  < K1/4/0’+~ for  some constant K1 (which is the same for  all p and a). 

Lemma 2 is concerned with the change in the integral when p ( x )  has zero mean and 
is perturbed slightly by an expansion/contraction. The change is equal, to leading 
order, to that obtained if p ( x )  is replaced by a Gaussian distribution with the same 
second-order moments. 

LEMMA 2. Let p ( x )  be a p.d$ with mean zero, second-order central moment m2 and 
absolute fourth-order central moment 14. Also let a and h be related by a = 1 + h. Then 
p (x /a ) /a ,  a p.d$ with the same shape as p but with a different scale, satisjies 

tr(m2) / W g ~ ( x ,  a2) dx = p ( x ) g ~ ( x ,  a2) dx - h- %i(O, a2) + 6 a J 0 2  

where 

for some constants K and K1 (which are the same for  all p and a). 

Lemmas 3 and 4 are concerned with the case where p ( x )  is a much broader distribution 
than gj,(x,a2). Lemma 3 states that in such cases one can evaluate the integral to 
leading order by replacing gi(x, a2) by an appropriate delta function. 

LEMMA 3. Let p ( x )  be a p.d$ with Jp(x)d i  a continuous and bounded function of 
P. Then J p(x)gA(x, a2) dx + J p ( x )  dPlp=o as a --f 0. 

Lemma 4 is concerned with the change in the integral when p ( x )  has zero mean and 
is perturbed slightly by an expansion/contraction. The change is equal, to leading 
order, to that obtained if g1(x,cr2) is replaced by an appropriate delta function. 

LEMMA 4. Let p ( x )  be a p.d$ with zero mean and with Jp(x)dP a continuous and 
bounded function of P. Also let a and h be related by a = 1 + 1. Then p (x /a ) /a ,  a p.d$ 
with the same shape as p but with a different scale, satisfies 

1 
- h (J P o S i ( x ,  a 02 )  dx - / p ( x ) g i ( x ,  02) dx) + -1 / p ( x )  dPlp=o 

as (a, h )  + 0. 

A sketch of the proof of these lemmas is as follows. For lemma 1 the error term E 

can be written as J q’(P)gi(f + hl, a2) d4 where q’(P) = J p ( x  + rnl) dB - 9’(P, h2). q’ 
reflects the non-Gaussianity of p .  E can then be bounded by expanding g ~ ( f  + h1, 02) 

in a Taylor series in P. For lemma 2, the substitution x’ = x / a  can be made and 
9~(P’ ( l  + h),cr2) expanded in a Taylor series in h. Lemma 3 is a consequence of 
the fact that the measure with density 9i(4,a2) converges weakly (or narrowly) to a 
measure of mass 1 concentrated at 2 = 0 as a + 0. For lemma 4, the substitution 
x’ = x / a  can be made and gl(P‘( 1 + h),  a2)/91(P’, 02) expanded for small h followed 
by consideration of the weak limits of the measures with densities %i(P, (r2)lPI2/o2 
and gi(P, O ~ ) ~ P ] ~ / O ~ .  

The integral in equations (6) and (7) can now be evaluated straightforwardly using 
the lemmas above (and assuming the weak condition required in lemmas 3 and 4, 
namely that J ~ A ( x )  dP is continuous and bounded). First we consider the cases where 
pA is much narrower than 3’i(x, a,’), i.e. cases where d Q ao. These are the cases which, 
in figure 4, lie below the left-to-right line through the figure. The required integrals 
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for various values of A are illustrated schematically in figure 3(a). The results follow 
from lemma 2 for 0 < A 4 oA and from lemma 1 for other values of A .  Now consider 
the cases where pa is much broader than 9 i ( x ,  o,’), i.e. cases where 00 4 d. These are 
the cases which, in figure 4, lie above the left-to-right line through the figure. The 
required integrals for various values of A are illustrated schematically in figure 3(b). 
The results follow from lemma 4 for 0 < A 4 oA and from lemma 3 for other values 
of A .  
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